Impaired spatial working memory but spared spatial reference memory following functional loss of NMDA receptors in the dentate gyrus

نویسندگان

  • B Niewoehner
  • F N Single
  • Ø Hvalby
  • V Jensen
  • S Meyer zum Alten Borgloh
  • P H Seeburg
  • J N P Rawlins
  • R Sprengel
  • D M Bannerman
چکیده

Novel spatially restricted genetic manipulations can be used to assess contributions made by synaptic plasticity to learning and memory, not just selectively within the hippocampus, but even within specific hippocampal subfields. Here we generated genetically modified mice (NR1(deltaDG) mice) exhibiting complete loss of the NR1 subunit of the N-methyl-D-aspartate receptor specifically in the granule cells of the dentate gyrus. There was no evidence of any reduction in NR1 subunit levels in any of the other hippocampal subfields, or elsewhere in the brain. NR1(deltaDG) mice displayed severely impaired long-term potentiation (LTP) in both medial and lateral perforant path inputs to the dentate gyrus, whereas LTP was unchanged in CA3-to-CA1 cell synapses in hippocampal slices. Behavioural assessment of NR1(deltaDG) mice revealed a spatial working memory impairment on a three-from-six radial arm maze task despite normal hippocampus-dependent spatial reference memory acquisition and performance of the same task. This behavioural phenotype resembles that of NR1(deltaCA3) mice but differs from that of NR1(deltaCA1) mice which do show a spatial reference memory deficit, consistent with the idea of subfield-specific contributions to hippocampal information processing. Furthermore, this pattern of selective functional loss and sparing is the same as previously observed with the global GluR-A L-alpha-amino-3-hydroxy-5-methyl-4-isoxazelopropionate receptor subunit knockout, a mutation which blocks the expression of hippocampal LTP. The present results show that dissociations between spatial working memory and spatial reference memory can be induced by disrupting synaptic plasticity specifically and exclusively within the dentate gyrus subfield of the hippocampal formation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Assessment of the role of NMDA receptors located in hippocampal CA1 area on the effects of oral morphine dependency on spatial learning and memory in rat

Introduction: It has been reported that oral morphine dependency facilitated formation of spatial learning and memory. In the present study the role of NMDA receptors located in hippocampal CA1 area of morphine dependent rats was studied. Methods: Male rats were divided into 4 groups. Two cannulae were stereotaxically implanted bilaterally into the hippocampal CA1 area. After 5 days recover...

متن کامل

Beneficial effect of Boswellia serrata gum resin on spatial learning and the dendritic tree of dentate gyrus granule cells in aged rats

Objective: The hippocampal formation, particularly the dentate gyrus (DG), shows age-related morphological changes that could cause memory decline. It is indicated that Boswellia resins attenuates memory deficits and the major component of Boswellia serrata (Bs) gum resin, beta boswellic acid increased neurite outgrowth and branching in hippocampal neurons. This study was designed to investigat...

متن کامل

Effect of Ovariectomy on Reference Memory Version of Morris Water Maze in Young Adult Rats

Background: The effect of ovariectomy and accompanying sudden loss of circulating gonad hormones on spatial learning performance in the young adult rats was examined. We hypothesized that spatial learning and memory in a considerable number of women who undergo a surgical menopause and estrogen deprivation before their natural menopause be impaired. Methods: In this study, we used 26 Wistar ra...

متن کامل

Stress-Induced Spatial Memory Deficit Reversed by Basolateral Amygdala NMDA Receptor Inhibition in Male Wistar Rats

Introduction: The present study investigated the role of the Basolateral Amygdala (BLA) N-methyl-D-aspartate  (NMDA) receptors in stress-induced spatial memory disturbance among the male Wistar rats. Methods: The male Wistar rats (Average weight =200 g) were cannulated bilaterally in the BLA, and entered the study (n=6-8) after one week. They received seven electro–foot-shock stress sessions o...

متن کامل

Hippocampal NMDA receptors are important for behavioural inhibition but not for encoding associative spatial memories

The idea that an NMDA receptor (NMDAR)-dependent long-term potentiation-like process in the hippocampus is the neural substrate for associative spatial learning and memory has proved to be extremely popular and influential. However, we recently reported that mice lacking NMDARs in dentate gyrus and CA1 hippocampal subfields (GluN1(ΔDGCA1) mice) acquired the open field, spatial reference memory ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 25  شماره 

صفحات  -

تاریخ انتشار 2007